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Abstract
A 2-queue system with a single-server operating according to the combined ‘Join
the Shortest Queue–Serve the Longest Queue’ regime is analyzed. Both cases, with
or without server’s switch-over times, are investigated under the non-preemptive
discipline. Instead of dealing with a state space comprised of two un-bounded
dimensions, a non-conventional formulation is constructed, leading to an alternative
two-dimensional state space, where only one dimension is infinite. As a result, the sys-
tem is defined as a quasi birth and death process and is analyzed via both the probability
generating functions method and the matrix geometric formulation. Consequently, the
system’s two-dimensional probability mass function is derived, from which the sys-
tem’s performance measures, such as mean queue sizes, mean sojourn times, fraction
of time the server resides in each queue, correlation coefficient between the queue
sizes, and the probability mass function of the difference between the queue sizes, are
obtained. Extensive numerical results for various values of the system’s parameters are
presented, as well as a comparison between the current non-preemptive model and its
twin system of preemptive service regime. One of the conclusions is that, depending
on the variability of the various parameters, the preemptive regime is not necessarily
more efficient than the non-preemptive one. Finally, economic issues are discussed
and numerical comparisons are presented, showing the advantages and disadvantages
of each regime.
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1 Introduction

1.1 Background and contribution

The aim of the combined ‘Join the Shortest Queue’ (JSQ) and ‘Serve the Longest
Queue’ (SLQ) service system is to equalize queue sizes. Each of the regimes, JSQ or
SLQ, has been studied separately in the literature. Under the JSQ regime, the system
is comprised of multiple separated queues, each with its specific service rate, while a
newly arriving customer joins the shortest queue. In the SLQ model, a single server
attends several queues, and always attempts to serve customers from the longest queue.

The combined JSQ–SLQ 2-queue Markovian system operating under the preemp-
tive regime discipline with zero switch-over times has been recently introduced and
analyzed in Perel et al. (2020). The investigation was further extended in Perel et al.
(2022) for a 3-queue system.

The current paper broadens and generalizes the analysis of the 2-queue combined
JSQ–SLQ system in three directions: (i) by analyzing the non-preemptive policy; (ii)
by considering non-zero server’s switch-over times, and (iii) by dealingwith economic
dichotomies to determine which and when one regime is preferable upon the other.

The non-preemptive policy implies that the server’s switching decisions are made
only upon service completions. Switching then occurs to a non-served queue only if
its size is larger than the size of the queue attended by the server. Two versions are
investigated: (i) non-preemptive with zero switch-over times, and (ii) non-preemptive
with non-zero switch-over times. The JSQ–SLQ system with non-preemptive switch-
ing policy differs from the classical multi-class preemptive or non-preemptive priority
models where class priority is fixed. In contrast, in the current model, the priority
levels change dynamically, affected by changes in queue sizes.

An example of the combined JSQ–SLQ model, taken from the healthcare domain,
is given in Perel et al. (2020), describing a medical clinic with a single operating
physician and several treatment rooms, each with its dedicated medical assisting staff.
A newly arriving patient is directed to the treatment room with the shortest queue.
When the physician becomes available, s/he consistently visits the room having the
longest queue. Service rates may differ between the treatment rooms.

Another example may be taken from the area of road transportation. Consider a
road with two junctions apart from each other. There are two possible routes between
the two junctions. At the first one, a traffic navigation application directs each arriving
vehicle according to the JSQpolicy.At the second junction, a traffic controlmechanism
gives extra ‘green-light time’ to the route with the longest queue.

A third example where the combined JSQ–SLQ model is applicable rises from the
area of self-service cashiers in a supermarket. A paying customer joins the shortest
queue, while a dedicated supermarket employee assists customers from the longest
queue.
Main contributions A conventional formulation of the combined 2-queue JSQ–SLQ
model leads to a two dimensional Markovian queueing system, where each dimension
represents the queue size of the corresponding queue. Evidently, this 2-dimensional
setting involves two un-bounded queues. For example, Flatto (1989), Avrachenkov
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et al. (2014) and Adan et al. (2016) applied boundary value problem technique to
solve such problems, while Bright and Taylor (1995) applied a truncation method.
In contrast, by using an unorthodox approach, we are able to derive the equilibrium
joint probability mass function of the queue lengths. The innovation in our analysis
is that rather than defining an un-bounded 2 dimensional state space describing the
queue sizes, the analysis is based on a novel formulation that transforms the state-
space into two dimensions, one finite, the other infinite, thus enabling the use of
probability generating functions (PGFs) technique combined with aMatrix Geometric
analysis. A second contribution is the analysis of the non-preemptive case,while a third
contribution is the introduction of server’s switch-over times. A fourth contribution is
an economic analysis to determine which and when one regime is preferable upon the
other.

1.2 Related work

Fixed priority models, as well as polling systems, have been studied extensively in the
queueing literature (see e.g. Conway et al. (2003), Takagi (1986), Kella and Yechiali
(1988), Yechiali (1993), Boon et al. (2011), along with the extensive references
therein). Browne and Yechiali (1989) investigated a polling-type system with server’s
dynamic switching rules. Recently, Perel and Yechiali (2017) and Jolles et al. (2018)
investigated a single-server two-queue systems where the server’s switching decisions
are threshold-based, depending on the evolving queue sizes.

A systemwith twoM/G/1-type queues under the SLQ regime and non-preemptive
discipline was analyzed by Cohen (1987). Flatto (1989) investigated the SLQ system
with two identical queues and server’s preemptive switching policy. A SLQ system
with N symmetric queues and non-preemptive policy was analyzed by van Houtum
et al. (1997). AMarkovian non-symmetric 2-queue system was studied by Knessl and
Yao (2013) under heavy traffic regime. A wireless network with SLQ mechanism
was studied by Maguluri et al. (2014), while Pedarsani and Walrand (2016) studied
an SLQ model for a multi-class network.

Queueing systems operating under the JSQ policy have also been studied exten-
sively in the literature. Winston (1977) studied a system with Poisson arrivals and a
finite number of identical servers, each serving its own queue, and proved that the
discounted number of jobs completing service by some time t is maximized under the
JSQ policy. This result was further extended by Hordijk and Koole (1990), who con-
sidered general arrival process, batch arrivals and finite buffers. Halfin (1985) derived
bounds for the probability distribution of the number of customers in a JSQ system
comprised of two identical servers. In Adan et al. (1991a), a JSQ system comprised of
two non-symmetric servers was analyzed by using the compensation method (iterative
approach), while a similar model with jockeying between the queues was studied in
Adan et al. (1991b) via a matrix geometric approach. Furthermore, for the 2-queue
JSQ system with Poisson arrival and two non-symmetric Exponential servers, Cohen
(1998) derived explicitly the bivariate probability generating function of the stationary
joint distribution of the queue lengths. This model was further analyzed in Adan et al.
(2016), by using the compensation method and by solving a boundary value prob-
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lem. van Houtum et al. (2001) studied a production system consisting of a group of
parallel machines (servers) and multiple job types, where upon arrival, each job joins
the shortest queue among all queues capable of serving it. Using numerical methods
and truncation, the authors derive upper and lower bounds for the mean waiting time.
Yao and Knessl (2005, 2006) studied a system comprised of two M/M/∞ queues, in
which new arrivals join the shortest queue. They applied asymptotic analysis for the
bivariate generating function of the number of customers in each queue. A JSQ system
operating under the Halfin-Whitt regime was studied by Eschenfeldt and Gamarnik
(2018) and by Braverman (2020), where steady-state characteristics were obtained.
A JSQ model with a large number of queues was studied in Dawson et al. (2019)
and limiting results of various performance measures were derived. Dimitriou (2021)
explored the stability and tail asymptotics of a Markovian single server retrial system
with two infinite capacity orbits, where arriving customers that find the server busy
join the shortest orbit queue. It should be emphasized that in the majority of the afore-
mentioned JSQ models, a dedicated server is assigned to each queue. In deviation, in
the current study, a unified JSQ–SLQ model is analyzed to examine a single-server
polling-type system, where the server’s transitions are from a shorter queue to a longer
one, while incoming customers opt for the shortest queue.
Order of the paper and results This paper is organized as follows. Sections2, 3 and
4 present and analyze the non-preemptive model with zero switch-over times. The
system is first formulated in Sect. 2, while in Sect. 3 the partial probability generat-
ing functions of the system’s states are derived, along with calculations of system’s
performance measures. In Sect. 4, the system’s stability condition is derived via the
matrix geometricmethod. Section5 analyzes the casewith non-zero switch-over times.
Extensive numerical results are presented in Sect. 6, and the two regimes - preemptive
vs. non-preemptive - are compared. Various insights are then drawn, one of which is
that the preemptive regime is not necessarily more efficient than the non-preemptive
one. A detailed economic analysis follows, assessing the relative advantages of the
two regimes and identifies the parameter values under which one regime performs
better than the other. Section7 concludes the paper.

2 Zero switch-over times

Consider a single server polling-type system comprised of two asymmetrical queues,
denoted by Q1 and Q2. The arrival process of customers to the system is Poisson with
rate λ. Service duration of an arbitrary customer in Qi is exponentially distributedwith
mean 1/μi , i = 1, 2. An arriving customer follows the ‘Join the Shortest Queue’ (JSQ)
policy, i.e. s/he always joins the shortest queue, while if both queues are with equal
lengths, the customer joins Qi w.p. pi ≥ 0, where p1 + p2 = 1. The server resides in
each queue according to a non-preemptive ‘Serve the Longest Queue’ (SLQ) policy.
That is, if service is rendered to one of the queues, and the number of customers in the
un-served queue exceeds the number of customers in the served queue, the server first
finishes the current service, and only then switches to the other (un-served) queue,
provided that the number of customers in the un-served queue is still greater than the
number of customers in the served queue. Otherwise, the server remains in the current
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queue. Also, if the server has completed service in Qi (i = 1, 2) and both queues are
equal in size, the server does not switch. In this case, if a new customer arrives before
the next service completion, the customer will join Q1 or Q2 with probability p1 and
p2, respectively, independently of the servers’ position.

Let Li (t) denote the number of customers present in Qi (i = 1, 2) at time t > 0, and
let I (t) denote the server’s position at that time. I (t) = i implies that the server resides
in Qi . Under stability (see stability condition in the sequel), let Li = limt→∞ Li (t)
and I = limt→∞ I (t). Define D(t) = (L1(t) − L2(t))I (t) and D = (L1 − L2)I . In
deviation from the preemptive JSQ–SLQ regime, where L1 − L2 may assume only
the values (−1), (0) and (1), under the non-preemptive combined JSQ–SLQ policy,
L1 − L2 assumes the values (−2), (−1), (0), (1) or (2). As a result from the model
definition, L1 − L2 = 2 necessarily implies that I = 1, while L1 − L2 = −2 directly
leads to I = 2. However, when L1 − L2 = −1, 0, 1, the position of the server, I ,
may assume any of the values 1 or 2, which leads to the form 1i , 0i , −1i , for i = 1, 2.
Hence, overall, there are 8 values for D, as follows:

• D = 2: L1 − L2 = 2, server is at Q1, an arriving customer joins Q2.
• D = 1i : L1 − L2 = 1, server is at Qi (i = 1, 2), an arriving customer joins Q2.
• D = 0i : L1 = L2, server is at Qi (i = 1, 2), an arriving customer joins Qi w.p.

pi (p1 + p2 = 1).
• D = −1i : L1 − L2 = −1, server is at Qi (i = 1, 2), an arriving customer joins

Q1.
• D = −2: L1 − L2 = −2, server is at Q2, an arriving customer joins Q1.

The above system is now formulated as a two dimensional continuous time
Markovian process, having state space {(n, d)}, for n ≥ 0 and d ∈ D =
{2, 11, 12, 01, 02,−11,−12,−2}, where n denotes the number of customers in Q1.
In a stable system, the steady state joint probability mass function is denoted by
Pn,d = P(L1 = n, D = d). A transition rate diagram of the process (L1(t), L2(t))
is depicted in Fig. 1, from which the states of the resulting process (L1(t), D(t))
are readily concluded. The construction of Fig. 1 deserves a further explanation. It is
comprised of squares along five diagonals. Each square represents a possible state of
(L1, L2). A square along the main diagonal has two possible states (n, n): one for
the case where D = 01 (both queues equal in size and the server resides in Q1), and
D = 02 (the server resides in Q2). Furthermore, each square on the diagonal above
the main diagonal represents the cases where D = −1i , where the index i (i = 1, 2)
indicates the position of the server. Finally, each square on the diagonal above the
latter (the most north-east diagonal) represents the case where D = −2, while the
diagonal below the main and the one below it represent the cases where D = 1i and
D = 2, respectively.

3 Probability generating functions

This section is devoted to the derivation of the steady-state probability mass function
of the 2-dimensional process (L1, D). Following Perel et al. (2020), we use an un-
conventional construction of the probability generating functions (PGFs) and utilize
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Fig. 1 Transition rate diagram of (L1(t), L2(t))

their properties. Specifically, instead of deriving PGFs along the horizontal axis, as is
commonly done, we derive PGFs along the diagonals of Fig. 1.

3.1 Steady-state equations and corresponding PGFs

For each diagonal of Fig. 1, we write the balance equations for all states n along the
diagonal. We first obtain the equations describing the states when the server resides
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in Q1, as follows: (i) When d = 2 (lower diagonal),

(λ + μ1)Pn,2 = μ2Pn,12 , n ≥ 2. (1)

(i i) When d = 11 (states 11 along the diagonal below the main),

(λ + μ1)P1,11 = λp1
(
P0,01 + P0,02

) + μ1P2,2 + μ2P1,02 , (2)

(λ + μ1)Pn,11 = λp1Pn−1,01 + λPn,2 + μ1Pn+1,2 + μ2Pn,02 , n ≥ 2. (3)

(i i i) For d = 01 (states 01 along the main diagonal),

λP0,01 = μ1P1,11 , (4)

(λ + μ1)P1,01 = λP1,11 + μ1P2,11 , (5)

(λ + μ1)Pn,01 = λPn,11 + λPn−1,−11 + μ1Pn+1,11 , n ≥ 2. (6)

(iv) For d = −11 (states −11 along the diagonal above the main)

(λ + μ1)Pn,−11 = λp2Pn,01 , n ≥ 1. (7)

In a similar manner, the balance equations for the case when the server resides in Q2
are given by:

(v) When d = 12 (states 12 along the diagonal below the main),

(λ + μ2)Pn,12 = λp1Pn−1,02 , n ≥ 2. (8)

(vi) When d = 02 (states 02 along the main diagonal),

λP0,02 = μ2P0,−12 , (9)

(λ + μ2)P1,02 = λP0,−12 + μ2P1,−12 , (10)

(λ + μ2)Pn,02 = λPn−1,−12 + λPn,12 + μ2Pn,−12 , n ≥ 2. (11)

(vi i) For d = −12 (states −12 along the diagonal above the main),

(λ + μ2)P0,−12 = λp2
(
P0,01 + P0,02

) + μ2P0,−2 + μ1P1,01 , (12)

(λ + μ2)Pn,−12 = λp2Pn,02 + λPn−1,−2 + μ2Pn,−2 + μ1Pn+1,01 , n ≥ 1. (13)

(vi i i) For d = −2 (upper diagonal),

(λ + μ2)Pn,−2 = μ1Pn+1,−11 , n ≥ 0. (14)

For each d ∈ D, the conditional PGF of the number of customers in Q1 is defined
as follows:

Gd(z) =
∑

n

Pn,d z
n, d ∈ D, |z| ≤ 1
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Multiplying each of the Eqs. (1)–(14) by zn (for the appropriate n), and summing
over n ≥ 1, we get a set of 8 equations for the probability generating functions,
((G2(z), G11(z), G01(z), G−11(z), G12(z), G02(z), G−12(z), G−2(z)), as follows:

(λ + μ1)G2(z) = μ2G12(z), (15)

(λ + μ1)zG11(z) = (λz + μ1)G2(z) + λp1z
2G01(z) + μ2zG02(z)

− (μ2 − λp1)zP0,02 , (16)

(λ + μ1)zG01(z) = (λz + μ1)G11(z) + λz2G−11(z) + μ1zP0,01 , (17)

(λ + μ1)G−11(z) = λp2G01(z) − λp2P0,01 , (18)

(λ + μ2)G12(z) = λp1zG02(z) − λp1P0,02 , (19)

(λ + μ2)G02(z) = λG12(z) + (λz + μ2)G−12(z) + μ2P0,02 , (20)

(λ + μ2)zG−12(z) = μ1G01(z) + λp2zG02(z) + (λz + μ2)zG−2(z)

− (μ1 − λp2)zP0,01 , (21)

(λ + μ2)zG−2(z) = μ1G−11(z). (22)

The set of 8 Eqs. (15)–(22) is condensed into a matrix form:

A(z) · �G(z) = �P(z), (23)

where

A(z) =

⎛

⎜⎜⎜⎜⎜⎜
⎜
⎝

λ + μ1 0 0 0 −μ2 0 0 0
−(λz + μ1) (λ + μ1)z −λp1z

2 0 0 −μ2z 0 0
0 (−λz + μ1) (λ + μ1)z −λz2 0 0 0 0
0 0) −λp2 λ + μ1 0 0 0 0
0 0 0 0 λ + μ2 −λp1z 0 0
0 0 0 0 −λ λ + μ2 −(λz + μ2) 0
0 0 −μ1 0 0 −λp2z (λ + μ2)z −(λz + μ2)z
0 0 0 −μ1 0 0 0 (λ + μ2)z

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎠

,

�G(z) = (
G2(z), G11(z), G01(z), G−11(z), G12(z), G02(z), G−12(z), G−2(z)

)T

is an 8-dimensional column vector of the desired PGFs, and

�P(z) = ((0,−(μ2 − λp1z)zP0,02 , μ1zP0,01 ,−λp2P0,01 ,−λp1zP0,02 , μ2P0,02 ,

− (μ1 − λp2z)P0,01 , 0)
T

is a column vector containing the two unknown ‘boundary probabilities’, P0,01 and
P0,02 .

By Cramer’s rule, Gd(z) = |Ad (z)|
|A(z)| , d ∈ D = {2, 11, 12, 01, 02,−11,−12,−2},

where |A| is the determinant of a matrix A, and Ad(z) is the matrix obtained from A(z)
by replacing the corresponding column of the latter matrix by �P(z). Each of the PGFs
Gd(z), d ∈ D, is a function of the probabilities P0,01 and P0,02 , appearing in �P(z).
One equation for the calculation of the boundary probabilities, is the normalization
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equation,

∑

d∈D
Gd(1) =

∑

d∈D
lim
z→1

| Ad(z) |
| A(z) | = 1, (24)

while a second relation between P0,01 and P0,02 is derived as follows. Since Gd(z) is
defined for all |z| ≤ 1, each root of |A(z)| is a root of |Ad(z)|. The determinant |A(z)|
is a 6-degree polynomial which can be expressed as |A(z)| = z2(1 − z)h(z), where

h(z) = − z3α3 + z2α2 − zα1 − α0, (25)

and

α0 = μ2
1μ

2
2

[
(λ+μ1)

2(λ+μ2)
2+λ(λ+μ1)(λ+μ2)(μ1 p1+μ2 p2)+λ2μ1μ2 p1 p2

]
,

α1 = λμ1μ2(λ + μ1)
2(λ + μ2)

2(μ1 + μ2) + μ2
1μ

2
2(λ + μ1)

2(λ + μ2)
2

+ λ2μ2
1μ

2
2(λ+μ1)(λ+μ2)+λ2μ1μ2(λ+μ1)(λ+μ2)(μ1 p1+μ2 p2)(μ1+μ2)

+ λμ2
1μ

2
2(λ+μ1)(λ+μ2)(μ1 p1+μ2 p2)+λ2μ3

1μ
3
2 p1 p2

+ 2λ3μ2
1μ

2
2 p1 p2(μ1+μ2),

α2 = λ3(λ + μ1)
2(λ + μ2)

2(μ1(1 + p2) + μ2(1 + p1)) + λ4(λ + μ1)
2(λ + μ2)

2

+ λ2(λ + μ1)
2(λ + μ2)

2(μ2
1 + μ2

2) + λ4μ1μ2(λ + μ1)(λ + μ2)

+ 2λ5μ1μ2 p1 p2(μ1 + μ2) + λ6μ1μ2 p1 p2,

α3 = λ4
[
(λ + μ1)

2(λ + μ2)
2 − λ2μ1μ2 p1 p2

]
.

Note that the elements αi , i = 0, . . . , 3, are all positive and symmetric in μ1 and μ2
and in p1 and p2, as expected. The cubic polynomial h(z) possesses 3 roots, denoted
by zk , k = 1, 2, 3, that can be expressed explicitly by solving a cubic formula. Since
h(z) > 0 for all z < −1 and h(0) < 0, then there is at least one root in the interval
(−1, 0). By applying Descartes’ rule of signs on h(−z) (see e.g. Curtiss 1918), we
conclude that h(z) possesses a single root in (−1, 0), whichwe use as a second relation
between the looked for boundary probabilities, P0,01 and P0,02 . It can be verified that,
under stability, the two other roots are greater than 1, and therefore not relevant.
Furthermore, the necessary and sufficient condition for the stability is is h(1) < 0,
and it is shown in Sect. 4.2 below, by using matrix geometric analysis. From all the
above, P0,01 and P0,02 can be calculated, which provides us with expressions for the
PGFs, Gd(z), for all d ∈ D.
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3.2 Performancemeasures

Define, respectively, the marginal probabilities of D and of L1 as

P•d = P(D = d) =
∞∑

n=0

Pn,d = Gd(1), d ∈ D,

Pn• = P(L1 = n) =
∑

d∈D
Pn,d , n ≥ 0.

Then,

E[L1] =
∞∑

n=0

nPn• =
∑

d∈D
G ′

d(1),

E[D] = E[L1 − L2] =
∑

d∈D
dGd(1)

= 2G2(1) + G11(1) + G12(1) − G−11(1) − G−12(1) − 2G−2(1)

= 2(P•2 − P•(−2)) + (P•11 − P•(−11)) + (P•12 − P•(−12)),

E[L2] = E[L1] − E[D].

Furthermore,

Cov(L1, L2) = E[L1L2] − E[L1]E[L2] = E[L1(L1 − D)] − E[L1]E[L2]
= E[L2

1] − E[L1D] − E[L1]E[L2],

where

E[L2
1] =

∑

d∈D
G ′′

d(1) + E[L1],

E[L1D] =
∑

d∈D

∑

n

nd Pn,d = 2
∑

n

nPn,2 − 2
∑

n

nPn,−2+
∑

n

nPn,11−
∑

n

nPn,−11

+
∑

n

nPn,12 −
∑

n

nPn,−12

= 2
[
G ′

2(1) − G ′−2(1)
] + G ′

11(1) − G ′−11(1) + G ′
12(1) − G ′−12(1).

Also, the variance of Li , for i = 1, 2, is given by

Var(L1) = E[L2
1] − (E[L1])2 ,

Var(L2) = E[L2
2] − (E[L2])2 = E[(L1 − D)2] − (E[L2])2

= E[L2
1] − 2E[L1D] + E[D2] − (E[L2])2 ,

where E[D2] = ∑

d∈D
d2P•d = 4(P•2 + P•(−2)) + P•11 + P•(−11) + P•12 + P•(−12).
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As a result, the correlation coefficient between L1 and L2, denoted byCor(L1, L2),
can be explicitly calculated, using Cor(L1, L2) = Cov(L1,L2)√

Var(L1)Var(L2)
(for numerical

results, see Sect. 6).
The effective arrival rate to Qi (i = 1, 2), λie f f , is given by

λ1e f f = λ
(
p1(P•01 + P•02) + P•(−11) + P•(−12) + P•(−2)

)
,

λ2e f f = λ
(
p2(P•01 + P•02) + P•11 + P•12 + P•2

)
.

Clearly, λ1e f f + λ2e f f = λ. The effective rate of work flowing into Qi is ρi
e f f = λie f f

μi
.

We thus have,

P(Server is idle) = P0,01 + P0,02 = 1 − ρ1
e f f − ρ2

e f f .

By Little’s Law, the mean sojourn time of a customer in Qi , for i = 1, 2, is given
by

E[Wi ] = E[Li ]
λie f f

.

4 Matrix geometric

4.1 Formulation

The system is formulated as a Quasi Birth and Death (QBD) process with 8 phases and
an un-bounded number of levels, where phase d corresponds to D = d, for d ∈ D,
and each level n corresponds to L1 = n, the total number of customers in Q1. The
connections between the PGF method and the matrix geometric approach have been
investigated in several papers (see e.g. Perel and Yechiali 2013a, b; Paz and Yechiali
2014; Perel and Yechiali 2017; Phung-Duc 2017; Armony et al. 2019; Hanukov and
Yechiali 2021).

For n ≥ 2 define Sn to be the set of states
Sn = {(n, 2), (n, 11), (n, 01), (n,−11), (n, 12), (n, 02), (n,−12), (n,−2)}, and

arrange the system’s states in the order

S =
{
(0, 01), (0, 02), (0,−12), (0,−2); (1, 11), (1, 01), (1,−11), (1, 02), (1,−12),

(1,−2);S2;S3; . . . ;Sn . . .
}
.
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The infinitesimal generator matrix of the QBD, denoted by Q, is given by

Q =

⎛

⎜⎜⎜⎜⎜
⎝

B0
1 B0

0 0 · · · · · · · · · · · · · · ·
B1
2 B1

1 B1
0 0 · · · · · · · · · · · ·

0 B2 A1 A0 0 · · · · · · · · ·
0 0 A2 A1 A0 0 · · · · · ·
0 0 0 A2 A1 A0 0 · · ·
.
.
.

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞

⎟⎟⎟⎟⎟
⎠

,

where

B0
1 =

⎛

⎜⎜
⎝

−λ 0 λp2 0
0 −λ λp2 0
0 μ2 −(λ + μ2) 0
0 0 μ2 −(λ + μ2)

⎞

⎟⎟
⎠ , B0

0 =

⎛

⎜⎜
⎝

λp1 0 0 0 0 0
λp1 0 0 0 0 0
0 0 0 λ 0 0
0 0 0 0 λ 0

⎞

⎟⎟
⎠ ,

B1
2 =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

μ1 0 0 0
0 0 μ1 0
0 0 0 μ1
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎟⎟⎟⎟
⎠

,

B1
1 =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

−(λ + μ1) λ 0 0 0 0
0 −(λ + μ1) λp2 0 0 0
0 0 −(λ + μ1) 0 0 0
μ2 0 0 −(λ + μ2) λp2 0
0 0 0 μ2 −(λ + μ2) 0
0 0 0 0 λ −(λ + μ2)

⎞

⎟⎟⎟
⎟⎟⎟
⎠

,

B1
0 =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0
0 λp1 0 0 0 0 0 0
0 0 λ 0 0 0 0 0
0 0 0 0 λp1 0 0 0
0 0 0 0 0 λ 0 0
0 0 0 0 0 0 λ 0

⎞

⎟⎟
⎟⎟⎟⎟
⎠

, B2 =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

μ1 0 0 0 0 0
0 μ1 0 0 0 0
0 0 0 0 μ1 0
0 0 0 0 0 μ1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

,

and

A1 =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎝

−(λ+μ1) λ 0 0 0 0 0 0
0 −(λ+μ1) λ 0 0 0 0 0
0 0 −(λ+μ1) λp2 0 0 0 0
0 0 0 −(λ+μ1) 0 0 0 0
μ2 0 0 0 −(λ+μ2) λ 0 0
0 μ2 0 0 0 −(λ+μ2) λp2 0
0 0 0 0 0 μ2 −(λ+μ2) 0
0 0 0 0 0 0 μ2 −(λ+μ2)

⎞

⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎠

,
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A0 =

⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 λp1 0 0 0 0 0 0
0 0 λ 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 λp1 0 0 0
0 0 0 0 0 λ 0 0
0 0 0 0 0 0 λ 0

⎞

⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎠

, A2 =

⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎝

0 μ1 0 0 0 0 0 0
0 0 μ1 0 0 0 0 0
0 0 0 0 0 0 μ1 0
0 0 0 0 0 0 0 μ1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎠

.

4.2 Stability condition

Define the matrix A = A0 + A1 + A2. Then,

A=

⎛

⎜⎜⎜
⎜⎜⎜
⎝

−(λ+μ1) λ+μ1 0 0 0 0 0 0
0 −(λ+μ1) λ+μ1 0 0 0 0 0
0 λp1 −(λ+μ1) λp2 0 0 μ1 0
0 0 λ −(λ+μ1) 0 0 0 μ1

μ2 0 0 0 −(λ+μ2) λ 0 0
0 μ2 0 0 λp1 −(λ+μ2) λp2 0
0 0 0 0 0 λ+μ2 −(λ+μ2) 0
0 0 0 0 0 0 λ+μ2 −(λ+μ2)

⎞

⎟⎟⎟
⎟⎟⎟
⎠

,

The matrix A is the infinitesimal generator matrix of the process describing the
evolution of D, given that L1 ≥ 2. Let �π be the stationary vector of the matrix A, i.e.
�π A = �0 and �π · �e = 1 (where �e is an 8-dimensional column vector with all its entries
equal to 1). From Neuts (1981), we have that the stability condition is

�π A0�e < �π A2�e,

which, after tedious algebra, translates into a 5-degree polynomial in λ,

g(λ) =λ5 (μ1(p1 − 2) + μ2(p2 − 2))

+ λ4
(
p1μ

2
1 + p2μ

2
2 − 3μ2

1 − 3μ2
2 − 4μ1μ2 − 2p1 p2μ1μ2

)

− λ3
(
μ3
1 + μ3

2 + μ2
1μ2 + μ1μ

2
2 + p1μ1μ

2
2 + p2μ

2
1μ2

)

+ λ2
(
p1μ

3
1μ2 + p2μ1μ

3
2 + 7μ2

1μ
2
2 − (p21 + p22)μ

2
1μ

2
2

)

+ λ
(
3μ3

1μ
2
2 + 3μ2

1μ
3
2 + 2p1μ

3
1μ

2
2 + 2p2μ

2
1μ

3
2

)
+ 2μ3

1μ
3
2 > 0. (26)

Note that Eq. (26) is symmetric in all of the system’s parameters, i.e. λ,μ1, μ2, p1, p2.
It can also be verified that Eq. (26) implies h(1) < 0, where h(z) is defined in Eq. (25).
In order to explore the roots of g(λ), we utilize again Descartes’ rule of signs. Since
the coefficients of λ5, λ4 and λ3 are negative, while all other coefficients of λi , for
i = 0, 1, 2 are positive, there is a single change of signs between the coefficients.
Therefore, there is a single positive root of this polynomial, which we denote by
λ0 = f (μ1, μ2, p1, p2). Since g(0) = 2μ3

1μ
3
2 > 0, and g(∞) < 0, the system is
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stable iff

λ < λ0. (27)

In the symmetric case, where μ1 = μ2 = μ, the stability condition (26) translates
into

μ(μ − λ)(μ + λ)
(
3λ3 + 9λ2μ + 2p1 p2λ

2μ + 8λμ2 + 2μ3
)

> 0,

or, equivalently,

λ < μ.

This holds for any value of p1, since when both service rates are equal, the system
can be looked upon as a single M(λ)/M(μ)/1 queue, for which the known stability
condition is λ < μ.

4.3 The equilibrium distribution

For n ≥ 0 define the steady-state probability vector �Pn , as follows:

�Pn =
⎧
⎨

⎩

(
P0,01 , P0,02 , P0,−12 , P0,−2

)
, n = 0,(

P1,11 , P1,01 , P1,−11 , P1,02 , P1,−12 , P1,−2
)
, n = 1,(

Pn,2, Pn,11 , Pn,01 , Pn,−11 , Pn,12 , Pn,02 , Pn,−12 , Pn,−2
)
, n ≥ 2

From Neuts (1981),

�Pn = �P2Rn−2, n ≥ 2,

where R is the minimal non-negative solution of the matrix quadratic equation

A0 + RA1 + R2A2 = 0. (28)

The vectors �P0, �P1 and �P2 are determined by the following linear system:

�P0B0
1 + �P1B1

2 = �0,
�P0B0

0 + �P1B1
1 + �P2B2 = �0,

�P1B1
0 + �P2A1 + �P2RA2 = �0,

�P0�e0 + �P1�e1 + �P2[I − R]−1�e = 1, (29)

where �e0 and �e1 are 4-dimensional and 6-dimensional, respectively, vectors of 1’s.
Equation (29) is the normalization equation.
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The mean total number of customers in Q1, E[L1], is given by

E[L1] =
∞∑

n=1

n �Pn�e = �P1 �e1 +
∞∑

n=2

n �P2Rn−2�e

= �P1 �e1 +
∞∑

n=2

(n − 1) �P2Rn−2�e +
∞∑

n=2

�P2Rn−2�e

= �P1 �e1 + �P2
(
[I − R]−2 + [I − R]−1

)
�e.

4.4 Characterization of the rate matrix R

Equation (28) for the calculation of the matrix R = [
ri, j

]
for i, j = 1, . . . , 8 involve

64 non-linear equationswith 64 variables.Algorithms for calculatiog R can be found in
Neuts (1981), Latouche and Ramaswami (1999), Artalejo and Gómez-Corral (2008),
and Harchol-Balter (2013). However, it is possible to characterize some of the prop-
erties of R. Following Ch. 6.2 in Latouche and Ramaswami (1999), the rate matrix
R can be represented as R = A0N , where the element Ni j of the matrix N is the
expected number of visits to state (n, j), starting from state (n, i), before the first visit
to any of the states in levels lower than n. We recall that in our context, L1 represents
the levels, and the index j refers to the phases (represented by D). Without calculating
N , since the entries of the first, second and fifth rows of A0 are all zeros, all elements
in the corresponding rows of R are zeros as well. That is, ri, j = 0 for i = 1, 2, 5
and j = 1, . . . , 8. Furthermore, since the second and third rows of A0 are equal, the
second and third rows of R will also be equal, namely r2, j = r3, j , j = 1, 2, 3, 4. In
addition, from explicitly writing Eq. (28), each element of R can be expressed in terms
of only two elements, r2,1 and r2,2. These observations reduce the calculation efforts
considerably. We also refer to Hanukov and Yechiali (2021), where it is shown that
when the matrices A0, A1, and A2 are all lower (or all upper) triangular, the elements
of R can be explicitly calculated and the stability condition is readily obtained.

5 Non-zero switch-over times

In this section we present the analysis for the 2-queue JSQ–SLQ systemwith non-zero
switch-over times. Specifically, we assume that the server’s switching time from Q1
(Q2) to Q2 (Q1) is exponentially distributed with mean 1/γ2 (1/γ1). We also assume
that once the server switches from Qi to Q j , it completes the switch and the service in
Q j , regardless the size of Qi . After completing the service in Qi , the server continues
to operate according to the non-preemptive SLQ policy. The existence of switch-over
times enlarges the number of possible states, such that the setD consists now 16 states.
Recall that the states in D describe the difference L1 − L2, as well as the location of
the server, which, in the case with switch-over times, is not only a specific queue, but
may also describe a transition phase of the server from Qi to Q j . The various states
are given as follows:
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• D = 2: Server is at Q1, an arriving customer joins Q2.
• D = 2s1 : Server switches to Q1, an arriving customer joins Q2.
• D = 1i : Server is at Qi (i = 1, 2), an arriving customer joins Q2.
• D = 1si : Server switches to Qi (i = 1, 2), an arriving customer joins Q2.
• D = 0i : Server is at Qi (i = 1, 2), an arriving customer joins Qi w.p. pi (p1+p2 =
1).

• D = 0si : Server switches to Qi (i = 1, 2), an arriving customer joins Qi w.p. pi
(p1 + p2 = 1).

• D = −1i : Server is at Qi (i = 1, 2), an arriving customer joins Q1.
• D = −1si : Server switches to Qi (i = 1, 2), an arriving customer joins Q1.
• D = −2: Server is at Q2, an arriving customer joins Q1.
• D = −2s2 : Server switches to Q2, an arriving customer joins Q1.

Similarly, as done in Sect. 3, we write the balance equations of the corresponding
system. The balance equations for the case when the server resides in Q1 or switches
to Q1 are given by

When d = 2,

(λ + μ1)Pn,2 = γ1Pn,2s1
, n ≥ 2. (30)

When d = 2s1 ,

(λ + γ1)Pn,2s1
= μ2Pn,12 , n ≥ 2. (31)

When d = 11,

(λ + μ1)P1,11 = λp1P0,01 + μ1P2,2 + γ1P1,1s1 , (32)

(λ + μ1)Pn,11 = λp1Pn−1,01 + λPn,2 + μ1Pn+1,2 + γ1Pn,1s1
, n ≥ 2. (33)

When d = 1s1 ,

(λ + γ1)P1,1s1 = λp1P0,02 + μ2P1,02 , (34)

(λ + γ1)Pn,1s1
= λPn,2s1

+ μ2Pn,02 + λp1Pn−1,0s1
, n ≥ 2. (35)

For d = 01,

λP0,01 = μ1P1,11 , (36)

(λ + μ1)P1,01 = λP1,11 + μ1P2,11 + γ1P1,0s1 , (37)

(λ + μ1)Pn,01 = λPn,11 + λPn−1,−11 + μ1Pn+1,11 + γ1Pn,0s1 , n ≥ 2. (38)

For d = 0s1 ,

(λ + γ1)P1,0s1 = λP1,1s1 , (39)

(λ + γ1)Pn,0s1
= λPn,1s1

+ λPn−1,−1s1
, n ≥ 2. (40)
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For d = −11,

(λ + μ1)Pn,−11 = λp2Pn,01 + γ1Pn,−1s1
, n ≥ 1. (41)

For d = −1s1 ,

(λ + γ1)Pn,−1s1
= λp2Pn,0s1

, n ≥ 1. (42)

Furthermore, the balance equations for the case when the server resides in Q2 or
switches to Q2 are given by:

When d = 1s2 ,

(λ + γ2)Pn,1s2
= λp1Pn−1,0s2

, n ≥ 2. (43)

When d = 12,

(λ + μ2)Pn,12 = λp1Pn−1,02 + γ2Pn,1s2
, n ≥ 2. (44)

When d = 0s2 ,

(λ + γ2)P1,0s2 = λP0,−1s2
, (45)

(λ + γ2)Pn,0s2
= λPn−1,−1s2

+ λPn,1s2
, n ≥ 2. (46)

When d = 02,

λP0,02 = μ2P0,−12 , (47)

(λ + μ2)P1,02 = λP0,−12 + μ2P1,−12 + γ2P1,0s2 , (48)

(λ + μ2)Pn,02 = λPn−1,−12 + λPn,12 + μ2Pn,−12 + γ2Pn,0s2
, n ≥ 2. (49)

For d = −1s2 ,

(λ + γ2)P0,−1s2
= λp2P0,01 + μ1P1,01 , (50)

(λ + γ2)Pn,−1s2
= λp2Pn,0s2

+ λPn−1,−2s2
+ μ1Pn+1,01 , n ≥ 1. (51)

For d = −12,

(λ + μ2)P0,−12 = λp2P0,02 + μ2P0,−2 + γ2P0,−1s2
, (52)

(λ + μ2)Pn,−12 = λp2Pn,02 + λPn−1,−2 + μ2Pn,−2 + γ2Pn,−1s2
, n ≥ 1. (53)

For d = −2s2 ,

(λ + γ2)Pn,−2s2
= μ1Pn+1,−11 , n ≥ 0. (54)
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For d = −2,

(λ + μ2)Pn,−2 = γ2Pn,−2s2
, n ≥ 0. (55)

The set of 16 PGFs is derived as follows:

(λ + μ1)G2(z) = γ1G2s1
(z), (56)

(λ + γ1)G2s1
(z) = μ2G12(z), (57)

(λ + μ1)zG11(z) = λp1z
2G01(z) + (λz + μ1)G2(z) + γ1zG1s1

(z) (58)

(λ + γ1)G1s1
(z) = λG2s1

(z) + μ2G02(z) + λp1zG0s1
(z) − (μ2 − λp1z)P0,02

(59)

(λ + μ1)zG01(z) = (λz + μ1)G11(z) + λz2G−11(z) + γ1zG0s1
(z) + μ1zP0,01 ,

(60)

(λ + γ1)G0s1
(z) = λG1s1

(z) + λzG−1s1
(z), (61)

(λ + μ1)G−11(z) = λp2G01(z) + γ1G−1s1
(z) − λp2P0,01 , (62)

(λ + γ1)G−1s1
(z) = λp2G0s1

(z), (63)

(λ + γ2)G1s2
(z) = λp1zG0s2

(z), (64)

(λ + μ2)G12(z) = λp1zG02(z) + γ2G1s2
(z) − λp1zP0,02 , (65)

(λ + γ2)G0s2
(z) = λzG−1s2

(z) + λG1s2
(z), (66)

(λ + μ2)G02(z) = λG12(z) + (λz + μ2)G−12(z) + γ2G0s2
(z) + μ2P0,02 , (67)

(λ + γ2)zG−1s2
(z)=μ1G01(z)+λp2zG0s2

(z)+λz2G−2s2
(z)−(μ1−λp2z)P0,01 ,

(68)

(λ + μ2)G−12(z) = λp2G02(z) + (λz + μ2)G−2(z) + γ2G−1s2
(z), (69)

(λ + γ2)zG−2s2
(z) = μ1G−11(z), (70)

(λ + μ2)G−2(z) = γ2G−2s2
(z). (71)

Note that in order to fully obtain the above PGFs that satisfy Eqs. (56)–(71), only
two probabilities, P0,01 and P0,02 , need to ba calculated. The derivation of these proba-
bilities is done similarly to thewaydescribed in Sect. 3.1. Furthermore, all performance
measures calculated in Sect. 3.2 for the case without switch-over times can be derived
in a similar manner for the model with switch-over times. Therefore, we omit these
calculations from the paper. Nevertheless, in Sect. 6 we present numerical results for
various performance measures of this model.

6 Numerical results

In this section we compare the performance measures of the current non-preemptive
JSQ–SLQmodelwith the correspondingmeasures of the preemptive JSQ–SLQqueue-
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ing system studied in Perel et al. (2020). For each model, we present numerical results
of the system’s performance measures for a wide range of parameters. Note that all
calculations are based on the analytical results and derived in the paper. There are two
sets of tables: Tables 1, 2, 3, 4 and 5, comparing various performance measures, and
Tables 6, 7, 8, 9 and 10, dealing with the probability distribution of D. Furthermore,
numerical results for the case with server’s switch-over times are provided in Tables
12 and 13.

6.1 Comparison between preemptive and non-preemptive JSQ–SLQmodels
without switch-over times

Tables 1, 2, 3, 4 and 5 present sets of results, where the calculated measures in all
tables are E[Li ], E[Wi ], λie f f , ρi

e f f (i = 1, 2) and Cor(L1, L2). The tables maintain
the same parameter values: λ = 4 andμ2 = 5, but differ by the values of the parameter
p1, where p1 = 0.2, 0.5, 0.8, 1 in Tables 1, 2, 3 and 4, respectively, while p1 = μ1

μ1+μ2
in Table 5. In each table, the values of μ1 vary between 3.3 and 100. For each value
of μ1, the first row describes results for the preemptive model, while the second row
presents results for the non-preemptive case. Furthermore, for each case, we present
the stability condition in terms of λ, according to the values of μ1, μ2, p1 and p2 (see
Eq. 27).

6.1.1 Insights from Tables 1, 2, 3, 4 and 5

1. In all tables, when μ2 = 5, E[L1] and E[L2], as well as E[W1] and E[W2], are all
decreasing functions of μ1.

2. When p1 ≤ 0.5 (Tables 1 and 2) and for small values of μ1, the values for E[Li ]
and E[Wi ] (i = 1, 2) in the non-preemptive model are significantly larger than
the corresponding measures in the preemptive case. However, as μ1 increases, the
differences between E[Li ], i = 1, 2, and between E[Wi ] in both models become
negligible.

3. When p1 > 0.5 (Tables 3 and 4) and for small values of μ1, the results for E[Li ]
and for E[Wi ] in the non-preemptive model are smaller than the corresponding
results in the preemptive case. This can be explained since whenever p1 > 0.5,
in case when L1 = L2, arriving customers are more likely to join Q1 rather than
Q2. In the preemptive case, when μ1 is relatively small (large mean service time),
the server switches to Q2 immediately when L2 > L1, even before completing
service at Q1. While the server resides at Q2, customers arrive at Q1, causing L1 to
exceed L2, so the server immediately switches back to Q1, and so on. Note that μ2
is not relatively large, therefore, the server rapidly alternates between the queues,
significant amount of times, without completing service. On the other hand, in the
non-preemptive case, the server first completes service, and only then, if needed,
switches to the other queue. Intuitively, one may think that switching over in the
middle of a service of a job (under a non-resume policy) may always be worse than
the non-preemptive case. However, the above results show that this is not always
the case, and, depending on the parameter values, switching may prove beneficial.
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Table 6 The probability mass function of D, for λ = 4, μ2 = 5, p1 = 0.2, p2 = 0.8

μ1 2 11 01 −11 12 02 −12 −2

3.3 0.0123 0.1782 0.2367 0.1002 0.0179 0.2172 0.2007 0.0368

3.5 0.0118 0.1732 0.2301 0.0901 0.0177 0.2348 0.2073 0.035

4 0.0108 0.1620 0.2181 0.0706 0.0173 0.2694 0.2204 0.0314

5 0.0093 0.1438 0.2062 0.0467 0.0168 0.3141 0.2372 0.0259

8 0.0067 0.1083 0.2023 0.0189 0.0161 0.3722 0.2587 0.0168

20 0.0032 0.055 0.2261 0.0029 0.0154 0.4164 0.2747 0.0063

100 0.0007 0.0129 0.26 0.0001 0.0151 0.431 0.2792 0.001

Table 7 The probability mass function of D, for λ = 4, μ2 = 5, p1 = p2 = 0.5

μ1 2 11 01 −11 12 02 −12 −2

3.3 0.0276 0.2243 0.2639 0.0723 0.0403 0.1815 0.1636 0.0265

3.5 0.0263 0.219 0.2611 0.0655 0.0395 0.1952 0.1679 0.0255

4 0.0236 0.2071 0.2574 0.0522 0.0376 0.2226 0.1763 0.0232

5 0.0195 0.1871 0.2582 0.0352 0.0352 0.2582 0.1871 0.0195

8 0.0131 0.1458 0.2804 0.0143 0.0316 0.3027 0.1994 0.0127

20 0.0058 0.0782 0.3526 0.0019 0.0280 0.3264 0.2027 0.0044

100 0.0012 0.0192 0.4347 0.00005 0.026 0.3219 0.1964 0.00055

Table 8 The probability mass function of D, for λ = 4, μ2 = 5, p1 = 0.8, p2 = 0.2

μ1 2 11 01 −11 12 02 −12 −2

3.5 0.0379 0.2707 0.2904 0.0301 0.0568 0.1654 0.137 0.0117

4 0.0329 0.2583 0.2968 0.0244 0.0526 0.1836 0.1405 0.0109

5 0.0259 0.2372 0.3141 0.0168 0.0467 0.2062 0.1438 0.0093

8 0.0156 0.1913 0.3728 0.0069 0.0374 0.2271 0.1427 0.0062

20 0.0057 0.1089 0.5192 0.0009 0.0272 0.2116 0.1245 0.002

100 0.001 0.0282 0.6821 0.00001 0.0203 0.16999 0.0983 0.0002

Table 9 The probability mass function of D, for λ = 4, μ2 = 5, p1 = 1, p2 = 0

μ1 2 11 01 −11 12 02 −12 −2

4.2 0.0354 0.2924 0.3296 0.00 0.0581 0.1646 0.1199 0.00

4.5 0.0324 0.2858 0.3386 0.00 0.0552 0.1686 0.1194 0.00

5 0.0283 0.2754 0.3541 0.00 0.051 0.1731 0.1181 0.00

8 0.015 0.2272 0.4439 0.00 0.036 0.1723 0.1056 0.00

20 0.0038 0.1349 0.6602 0.00 0.0183 0.1164 0.0664 0.00

100 0.0002 0.0365 0.9083 0.00 0.0046 0.0323 0.0181 0.00
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Table 10 The probability mass function of D, for λ = 4, μ2 = 5, p1 = μ1
μ1+μ2

, p2 = μ2
μ1+μ2

μ1 2 11 01 −11 12 02 −12 −2

3.3 0.0227 0.208 0.255 0.0831 0.0332 0.1924 0.1751 0.0305

3.5 0.0224 0.205 0.2522 0.0739 0.0336 0.2057 0.1785 0.0287

4 0.0214 0.1983 0.2502 0.0563 0.0343 0.2306 0.1838 0.0251

5 0.0195 0.1871 0.2582 0.0352 0.0352 0.2582 0.1871 0.0195

8 0.0145 0.1623 0.3141 0.0118 0.0349 0.2745 0.1774 0.0105

20 0.0057 0.1089 0.5192 0.0009 0.0272 0.2116 0.1245 0.002

100 0.0005 0.0343 0.8487 0.00 0.0094 0.06846 0.0386 0.00004

4. As μ1 increases, the maximum value of λ ensuring stability increases. However,
for p1 ≤ 0.5, the stability condition is more strict in the non-preemptive case than
it is in the preemptive one.

5. For μ1 ≤ 5, as p1 increases, E[L1] and E[L2] increase, as higher proportion of
the arrivals joins Q1 when L1 = L2. If the server renders service in Q1, the non-
preemptive policy forces the server to remain there until service completion, and
if μ1 < μ2, the number of customers arriving to the system during this service
time, increases. However, when μ1 > μ2, as p1 increases, the values for E[L1]
and E[L2] decrease.

6. The correlation coefficient between L1 and L2 is always positive. This follows from
the JSQ policy. Furthermore, as μ1 increases, the correlation coefficient between
L1 and L2 decreases. To explain this phenomenon, consider first small values
of μ1, where the server is busy in Q1 for a long period of time. Therefore, since
customers follow the JSQ policy, the number of customers in both queues increases
simultaneously. However, for large values of μ1, the behavior of L2 is less affected
by L1, since the server resides in Q1 a short amount of time.

7. Table 5 exhibits a balancing result between E[L1] and E[L2], in both the preemp-
tive and the non-preemptive cases. When the joining probabilities are relative to
the service rates ratio, i.e pi = μi

μ1+μ2
, i = 1, 2, both mean queue lengths are

significantly reduced.
8. All tables show that, when μ1 increases, the proportion of time the server spends

in both queues (i.e. ρ1
e f f + ρ2

e f f ) reduces significantly.
9. In the symmetric case, i.e. when p1 = p2 = 0.5 and μ1 = μ2, the obtained results

correspond to an M/M/1 system, as expected (see Tables 2 and 5 for the case
μ1 = 5).

Figures 2 and 3 depict the impact of p1 on the sum E[L1] + E[L2], for the case
λ = 4, and μ2 = 5, where in Fig. 2 μ1 = 3.5 while in Fig. 3 μ1 = 6.5. Obviously,
whenμ1 < μ2, that is, service time is longer in Q1 than in Q2 (Fig. 2),E[L1]+E[L2]
grows as p1 increases. This occurs since when p1 is high, customers tend to join the
slower queue when both queue sizes are equal, which increases the total number of
customers in the system. On the other hand, when μ1 > μ2 (Fig. 3), E[L1] + E[L2]
decreases as p1 increases, since joining the faster queuewith high probability when the
queue sizes are equal, reduces the total number of customers in the system. Moreover,
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Fig. 2 The impact of p1 on E[L1] + E[L2] for λ = 4, μ1 = 3.5 and μ2 = 5

Fig. 3 The impact of p1 on E[L1] + E[L2] for λ = 4, μ1 = 6.5 and μ2 = 5

in Fig. 2 (μ1 < μ2), when p1 < 0.6, the sum of queue sizes is almost equal in both
preemptive and non-preemptive regimes, while when p1 increases beyond 0.6, the
total queue under the preemptive regime becomes much higher than that under the
non-preemptive regime. In Fig. 3 (μ1 > μ2), there is no much difference between the
sum of the queue sizes as p1 increases, but for lower values of p1 the non-preemptive
case is better than the preemptive regime and for p1 larger, the opposite holds.

6.1.2 Insights from Tables 6, 7, 8, 9 and 10

Tables 6, 7, 8, 9 and 10 deal with the distribution of D, where λ = 4, μ2 = 5 while
p1 and μ1 change.

1. In all tables, as μ1 increases, the probabilities P(D = 2), P(D = −2) and P(D =
11) decrease drastically. Indeed, as service rate in Q1 increases, the total number
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of customers in both queues decreases, as well as the gap between the queue sizes.
Furthermore, P(D = 12) also decreases when μ1 increases, where in Tables 6, 7
and 8 the decrease is more moderate than in Tables 9 and 10.

2. In all tables, the probability P(L1 = L2) = P(D = 01) + P(D = 02) increases as
μ1 increases, since a fast service rate enables the system to be more balanced.

3. When p1 ≥ p2 (Tables 7, 8, 9, 10), the probability P(D = 01) increases as μ1
increases. Indeed, when service rate in Q1 is high, as well as the proportion of
customers joining Q1 when L1 = L2, the server spends more time in Q1 and
queue sizes tend to be more balanced. However, when p1 < p2 as in Table 6,
P(D = 01) has no drastic changes for different values of μ1, while P(D = 02)
increases significantly as μ1 becomes large.

4. For the symmetric case (Tables 7 and 10 for μ1 = 5) we get, as expected, that
P(server at Q1) = P(server at Q2) = 0.5, where

P(server at Q1) = P(D = 2) + P(D = 11) + P(D = 01) + P(D = −11),

P(server at Q2) = P(D = 12) + P(D = 02) + P(D = −12) + P(D = −2).

5. In Table 9, where p1 = 1, we have that P(D = −2) = 0, since in case when
L1 = L2, arriving customers will always join Q1, so L2 can never exceed L1 by
more than one customer.

6.2 Economic comparison between the preemptive and non-preemptive regimes

Let C denote the total operational cost rate of the JSQ–SLQ queueing systems
with zero-switch-over times (either under the preemptive policy or under the non-
preemptive policy). Specifically, C is the sum of the expected total cost per unit time
incurred by customers’ sojourn times in the system, and the cost per unit time resulting
from the server’s switch-overs. Define E[Si j ] to be the expected number of switches
per unit time from Qi to Q j , i 
= j , and let E[Swi tch] = E[S12] + E[S21] denote
the mean total number of server’s switches per unit time. In steady state, we have
E[S12] = E[S21]. Then, the expected total operational cost per unit time is

E[C] = c (E[L1] + E[L2]) + sE[Swi tch],

where c is the cost rate for a customer’s sojourn in the system, and s is the cost per
server’s switch. Without loss of generality, we set c = 1 and write

E[C] = (E[L1] + E[L2]) + sE[Swi tch]. (72)

The measures E[Si j ] for i 
= j are calculated as follows.
For the preemptive regime,

E[S12] = λp2G01(1) + μ1
(
G01(1) − P0,01

)
,
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E[S21] = λp1G02(1) + μ2
(
G02(1) − P0,02

)
,

while for the non-preemptive regime,

E[S12] = λp2P0,01 + μ1
(
G01(1) + G−11(1) − P0,01

)
,

E[S21] = λp1P0,02 + μ2
(
G02(1) + G12(1) − P0,01

)
.

6.2.1 Switching rates - numerical results and insights

The values of E[Swi tch], for both the preemptive and non-preemptive regimes, for
λ = 4 and μ2=5, where p1 assumes the values 0.2, 0.5 and 0.8 and μ1 varies between
3.5 to 10, are given in Table 11. For each value of p1, the top row represents the
preemptive case while the bottom row refers to the non-preemptive case.

Insights from Table 11 It is evident from the table that the switching rate in the
non-preemptive regime is smaller than the corresponding one in the preemptive case.
This is a direct result of the non-preemptive policy. However, asμ1 increases, the gaps
between the switch-over rates between the two regimes decrease. Furthermore, Table
11 shows that for the preemptive case, the switching rate is a decreasing function of
μ1, while for the non-preemptive case, it moderately increases when p1 = 0.2 and
p1 = 0.5, and concave when p1 = 0.8.

6.2.2 Expected total operational cost—results and insights

Figures4, 5 and 6 depictE[C] (Eq. 72) as a function ofμ1, both for the preemptive and
the non-preemptive regimes, where in each figure λ = 4,μ2 = 5while p1 assumes the
values 0.2, 0.5 and 0.8, respectively. Furthermore, for each figure, the left sub-figures
describe the case where switch-over cost is s = 0.5, the mid sub-figures refer to the
case where s = 2, while the right sub-figures describe the case where switch-over cost
is s = 10.

Insights from Figs. 4, 5 and 6:

1. In all 3 figures, the systems’ operational cost is a decreasing function of μ1.
2. Figure4a and b show that when p1 = 0.2, for small values of μ1, the cost rate

in the preemptive case is much lower than in the non-preemptive case, since there
are significant gaps between the number of customers in the system, i.e. between
E[L1] + E[L2], as shown in Table 1. However, as μ1 increases, the graphs of

Fig. 4 Expected operational costs of the preemptive and non-preemptive regimes, for λ = 4, μ2 = 5 and
p1 = 0.2
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Fig. 5 Expected operational costs of the preemptive and non-preemptive regimes, for λ = 4, μ2 = 5 and
p1 = 0.5

Fig. 6 Expected operational costs of the preemptive and non-preemptive regimes, for λ = 4, μ2 = 5 and
p1 = 0.8

the costs of the two regimes interlace, and the operational cost rate of the non-
preemptive case becomes lower than the preemptive one. Furthermore, when the
penalty on a server’s switch is s = 10 (Fig. 4c), the differences between the costs
are greater, but with smaller values for the non-preemptive case. The above findings
result from the values of E[swi tch], given in Table 11.

3. When p1 = 0.5 and s = 0.5 (Fig. 5a), the graphs of operational cost rates of both
regimes seem to be quite identical. As the penalty for a switch rises, see Fig. 5b
and c, the expected operational cost of the non-preemptive regime becomes lower
than the preemptive one.

4. Figure6a–c refer to the case where p1 = 0.8, i.e., that when L1 = L2, a newly
arriving customer joins Q1 with high probability. As a result, the operational cost
rate of the non-preemptive system is smaller than the corresponding cost in pre-
emptive case, especially when s = 10.

6.3 Numerical results for non-zero switch-over times

Tables 12 and 13 present sets of results, where the calculated measures in both tables
are againE[Li ],E[Wi ], λie f f , ρi

e f f (i = 1, 2) andCor(L1, L2), as well as the measure
P(Swi tch), which is the fraction of time that the server is switching from Qi to Q j .
In both tables, the parameters’ values are: μ2 = 5, p1 = p2 = 0.5, γ2 = 3, while
λ1 = 2 in Table 12 and λ1 = 3 in Table 13. Furthermore, in Table 12 the values of μ1
and γ1 vary between 3 to 8, and 3 to 10, respectively, while in Table 13 the values of
μ1 and γ1 vary between 5 to 10, and 10 to 14, respectively.

Insights from Tables 12 and 13:

1. In both tables, E[L1] and E[L2], as well as E[W1] and E[W2], are all decreasing
functions of μ1 and γ1.
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2. In both tables, as μ1 increases, the effective arrival rate to Q1, i.e. λ1e f f , increases.
Clearly, a fast service rate in Q1 shortens the queue length, and therefore rises the
probability that a newly arrival will join Q1.

3. The correlation coefficient between L1 and L2 is always positive, as obtained in
Tables 1, 2, 3, 4 and 5 . This again follows from the JSQ policy, as explained in
Sect. 6.1.

4. The proportion of time the server is switching between queues is a decreasing
function of γ1. However, it is less sensitive to the service rate μ1.

7 Concluding remarks

The combined operating policy ‘Join the Shortest Queue–Serve the Longest Queue’
is analyzed under the non-preemptive service regime for a 2-queue Markovian system
attended by a single server. The system is formulated in an innovative way, where,
instead of defining an un-bounded 2-dimensional state space (L1, L2), where Li rep-
resents the number of customers in Qi , i = 1, 2, the system is characterized by the
couple L1 and D = L1 − L2. This leads to a 2-dimensional state space with finite,
and small, dimension for D, and infinite dimension only for L1. The resulting QBD
process enables the combined use of PGFs method and matrix geometric analysis.
The results of the non-preemptive service regime are compared numerically with the
corresponding results of its twin preemptive service regime in numerous tables for
a wide range of parameter values. Among many insights, it is shown that when the
overall traffic intensity ρ = ρ1

e f f + ρ2
e f f approaches 1, and p1 ≤ p2, the values of

E[Li ] and E[Wi ] under the preemptive regime are smaller than their corresponding
values under the non-preemptive discipline. The ratio changes when p1 > p2. When
ρ is small, the differences between the performance measures under the two regimes
are small. In terms of total operating cost (customers’ sojourn times and server’s
switches), it is shown that there are cases where the non-preemptive regime is more
efficient economically, while in other cases the preemptive regime is preferable.
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